
Under Construction:
Multi-Threading In Components
by Bob Swart

One of the benefits of the 32-bit
Windows environment is that

it supports multi-threading. Delphi
2 allows us to develop applications
using multi-threading and this
month we’ll see what multi-thread-
ing is and how we can add support
for it to our own components.

Threads
In a Win32 environment, we no
longer have a co-operative multi-
tasking system, instead, we have
the notion of processes and
threads, where each process has at
least one thread (the primary
thread) and terminates when the
thread is terminated. Apart from
the primary thread, however, proc-
esses can have other threads run-
ning in a pre-emptive multi-tasking
environment, which means that
each thread will get CPU time
slices, no matter if and how other
threads and processes behave.

This is the theory, at least: in
practice some of the old 16-bit
code in Windows 95 can and will
quite happily let other threads wait
seemingly forever for time slices
when executed, but that’s another
story better told by the “experts”
from that company in Redmond...

What are the benefits of multi-
threading? Well, we can split off a
thread for a long process (to be
executed in the background), or
even split the workload over multi-
ple processors (on Windows NT),
or just make sure the GUI is always
available to the end-user while the
application itself is using other
threads to perform its tasks. I’m
sure you can think of places in your
apps or components where they
could really benefit from this.

So, how does it work with
Delphi? Fortunately (or should I
say, as usual with Delphi), we don’t
have to use the Win32 API calls to
work with multi-threading. To
understand the implementation of

multiple threads in Delphi, we just
have to look at the TThread class.

The TThread class lets you create
multiple threads of execution in
your Delphi application. Like
Experts and other abstract classes
in Delphi, TThread can’t be used as-
is. You must derive a new thread
class from TThread (for example
TDrBobThread) and override two
methods: Execute and Synchronize.

Execute is the method where we
must put the code for the thread to
execute. Returning from Execute
terminates the thread, frees the
thread’s stack, and calls the op-
tional OnTerminate event handler
(see the on-line Help for details).
Our Execute method must peri-
odically check the Terminated prop-
erty, because if this is set to True,
we must return immediately (oth-
erwise our thread won’t terminate

correctly when the Terminate
method is called).

The Synchronize procedure has
one argument of type TThread-
Method and lets you call this method
of your thread object to avoid
multi-thread conflicts with global
VCL components.

VCL components can only be
used from the main VCL thread:
Synchronize calls the method you
specify from within the main VCL
thread so you can freely use
properties and call methods of VCL
components.

It is the Synchronize method that
is allowed to use the global VCL
visual components and call
methods of these components.
And if we add multiple threads to
our application, we can safely ac-
cess all VCL components and call
their methods, as long as we only

{ TThread }
EThread = class(Exception);
TThreadMethod = procedure of object;
TThreadPriority = (tpIdle, tpLowest, tpLower, tpNormal, tpHigher,
tpHighest,tpTimeCritical);
TThread = class
private
 FHandle: THandle;
 FThreadID: THandle;
 FTerminated: Boolean;
 FSuspended: Boolean;
 FMainThreadWaiting: Boolean;
 FFreeOnTerminate: Boolean;
 FFinished: Boolean;
 FReturnValue: Integer;
 FOnTerminate: TNotifyEvent;
 FMethod: TThreadMethod;
 FSynchronizeException: TObject;
 procedure CallOnTerminate;
 function GetPriority: TThreadPriority;
 procedure SetPriority(Value: TThreadPriority);
 procedure SetSuspended(Value: Boolean);
protected
 procedure DoTerminate; virtual;
 procedure Execute; virtual; abstract;
 procedure Synchronize(Method: TThreadMethod);
 property ReturnValue: Integer read FReturnValue write FReturnValue;
 property Terminated: Boolean read FTerminated;
public
 constructor Create(CreateSuspended: Boolean);
 destructor Destroy; override;
 procedure Resume;
 procedure Suspend;
 procedure Terminate;
 function WaitFor: Integer;
 property FreeOnTerminate: Boolean read FFreeOnTerminate write FFreeOnTerminate;
 property Handle: THandle read FHandle;
 property Priority: TThreadPriority read GetPriority write SetPriority;
 property Suspended: Boolean read FSuspended write SetSuspended;
 property ThreadID: THandle read FThreadID;
 property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate;
end;

➤ Listing 1

32 The Delphi Magazine Issue 20

do so within the method we passed
to Synchronize.

So, while we could say that the
VCL as-is may not be thread-safe (ie
you cannot just access VCL compo-
nents in two threads’ Execute meth-
ods simultaneously), we have just
seen how to make sure we can use
the VCL in a thread-safe way, by
passing a custom method to the
Synchronize procedure and use the
global VCL components from
there. So, the VCL itself may not be
thread-safe, but we can use it in a
thread-safe way!

‘The abstract base class TThread
is defined in unit Classes (see List-
ing 1). I call it an abstract base
class, because the procedure

Execute is abstract and needs to be
overridden by a new derived class
of TThread and given a meaningful
implementation.

TFirstThread
Creating our first thread class,
TFirstThread, is very simple: we de-
rive a new class TFirstThread from
TThread then define and implement
a new Execute method, as can be
seen in Listing 2.

The purpose of TFirstThread is to
count in the background while the
main program is processing the
primary thread. Apart from the
Execute method (the one that
counts), we also need a construc-
tor to initialise the counter to 0 and
set the maximum number to which
we’ll be counting. Normally, the
constructor of a TThread class has
an argument called CreateSus-
pended, to specify whether or not
the thread should start right away
or be created and suspended, after
which you can set the priority level
first and then resume it. We can
skip that one and just pass False to
the inherited constructor instead.

Of course this is not a very mean-
ingful example, but if you need one
you can modify the TFirstThread to
copy a (big) file from one location
to another, counting the number of
bytes while copying. That should
provide a more complex frame-
work for the remainder of the prob-
lems and solutions in this example.

Using an instance of TFirst-
Thread is very simple, and can be
done with a form, an editbox and
one button, as in Figure 1.

If we click on the button, we use
the contents of the editbox to cre-
ate an instance of TFirstThread that
will count up to the given number.
If we click on the button again, the
TFirstThread class is terminated
(we can toggle the button caption
to indicate which kind of process-
ing is going on in the background).
Listing 3 shows the code for the
Button1.OnClick event to create
and terminate the TFirstThread
instance.

Testing the FirstThread compo-
nent with this form shows us that
the counter continues in the back-
ground (or, more specifically, in a
background thread), while the pri-
mary thread (the GUI) continues to
work. We can click on other but-
tons and they’ll perform just fine.
The only thing we miss is progress
on the background counter. Can’t
the thread tell us how far it is along
with counting, for example by up-
dating a label’s caption with this
information? The short answer is
yes, since the VCL is thread-safe.
However, we need to work by the
rules, as we’ve seen in the earlier
discussion.

Synchronicity
In order to access a property or
method (or just about anything)
from a VCL component, we need to
be sure we’re inside the so-called
Synchronize method. In practice,
this means we just need to write a
method that we can pass as an
argument to the Synchronize
method of the TThread parent class.
This way, we’ll be ensured that our
method can access the VCL
components.

In our example, we can add a
method UpdateCounter to the
TFirstThread class and make it

➤ Figure 1

unit thread1;
interface
uses Classes;
type
 TFirstThread = class(TThread)
 public
 MaxCounter,Counter: LongInt;
 constructor Create(MaxCount: LongInt);
 procedure Execute; override;
 end;
implementation
constructor TFirstThread.Create(MaxCount: LongInt);
begin
 inherited Create(False);
 MaxCounter := MaxCount;
 Counter := 0
end;
procedure TFirstThread.Execute;
begin
 while (Counter < MaxCounter) and not Terminated do
 Inc(Counter)
end;
end.

➤ Listing 2

procedure TForm1.Button1Click(Sender: TObject);
begin
 if (Sender as TButton).Caption = ’Start’ then begin
 FirstThread := TFirstThread.Create(StrToInt(Edit1.Text));
 Edit1.Text := ’0’;
 (Sender as TButton).Caption := ’Stop’
 end else begin
 { ’Stop’ }
 FirstThread.Terminate;
 Edit1.Text := IntToStr(FirstThread.Counter);
 FirstThread.Free;
 FirstThread := nil;
 (Sender as TButton).Caption := ’Start’;
 end
end;

➤ Listing 3

April 1997 The Delphi Magazine 33

update the caption of a label on the
form after the counter has reached
a certain value (say, after every
1,000th increment in value). See
Figure 2.

The special routine that updates
a label on the form is called Update-
Counter. We can freely access the
caption of CountLabel here. We
can’t call the UpdateCounter method
directly, however, but must give it
as a value argument to a call of the
Synchronize method of the TThread
base class. See Listing 4.

Note that I use a special value
Synchrone (which can also be de-
fined on the form itself) to experi-
ment with different values of
updating the counter. If we set
Synchrone too low (for example to a
value below 100), we’ll see that the
counter doesn’t increase that
quickly, since a lot of the time is
spent synchronising the back-
ground thread with the primary
GUI thread. If we set the value of
Synchrone high (for example to a
value over 1,000,000) we’ll see that
the counter will increase steadily
without too much overhead. For a
nice effect, I usually set the value of
Synchrone to a value between 10,000
and 100,000, but you can experi-
ment on your machine for your op-
timal settings. And of course we
could have used a TGauge and set
the value of the Progress property.

At least it should be clear that we
can do just about anything inside
the routine that is called by Syn-
chronize, as long as we take care
not to call this routine too often (ie
not for every update), as in that
case the act of actually synchronis-
ing the thread with the primary GUI
thread will take up too much time,
and your application will be far too
slow to be useful to anyone.

Thread Priority
It’s important to know that each
thread can also have a priority. The
priority can have one of the follow-
ing values: tpIdle, tpLowest,
tpLower, tpNormal, tpHigher,
tpHighest and tpTimeCritical. The
higher the priority, the more CPU
time slices a thread will get from
the system’s thread scheduler. The
TThread class already has a prop-
erty called Priority, so if we need

to adjust the priority level of our
thread, all we need to do is assign
a new value to this property.

Note that this is also the reason
why the original constructor has a
Boolean CreateSuspended parame-
ter: we can create a suspended
thread, set its priority to the re-
quired value and only then activate
it (useful for real important or real
unimportant threads that should
start with the correct priority right
away).

Thread Expert
So far we’ve created and expanded
a new thread class called
TFirstThread. However, Delphi 2
has a built-in expert that supports
the creation of a thread object in a
somewhat more straightforward
manner (albeit only slightly). Just
select File | New from the main
menu in Delphi 2 and click on the
Thread Object from the repository
(Figure 3).

Next, we can specify the name of
the new thread object. In this exam-
ple we’ll call it TSpagettiThread as
we’ll be using this second example
for the remainder of the column.
The code generated by Delphi
looks very similar to the code that
we’ve written by hand. Special
comments are included to remind
us that we should not call any VCL
method or access VCL properties
unless we’re in a routine called by
the Synchronize method.

We will use this framework to
work on our final example: the
dining philosophers.

Multiple Threads
The problem of the dining philoso-
phers is one where multiple con-
current processes (or threads)
need to share common resources,
such as printers or other devices.
The biggest problem that can
occur in these situations is the
problem of deadlock, where one or
more processes are waiting upon
each other (eg to free a resource)
before they can continue.

In the case of the dining philoso-
phers we have a table with room
for four monks to sit down. Each
monk has a small bowl and one
chopstick to the right of his bowl.
There is a big bowl in the centre of
the table containing rice, which
can only be eaten by using two
chopsticks. So, each monk must try
to borrow the chopstick from the
monk on his left. With a total of four
monks and four chopsticks, this
means that at most two monks at
the same time can eat (the two sit-
ting opposite each other). As long
as the monks co-operate, nobody
needs to starve. However, writing
an algorithm that ensures that
nobody starves is not easy.

Brute Force Attempt
Let’s first try a brute force ap-
proach, where every monk grabs

➤ Figure 2 ➤ Figure 3

procedure TFirstThread.Execute;
begin
 while (Counter < MaxCounter) and not Terminated do begin
 Inc(Counter);
 if (Counter mod Synchrone) = 0 then Synchronize(UpdateCounter)
 end
end;
procedure TFirstThread.UpdateCounter;
begin
 CountLabel.Caption := Format(’%d/%d’,[Counter, MaxCounter])
end;

➤ Listing 4

34 The Delphi Magazine Issue 20

the chopstick on his right (his own)
and then tries to grab the
chopstick on his left, in order to eat
his bowl of rice. If the chopstick on
his right isn’t available, he waits
until it becomes available before
grabbing for the other one (this
helps to prevent a deadlock situ-
ation where every monk has one
chopstick and everyone waits for
another to become available). We
can implement this algorithm as
shown in Listing 5, using four in-
stances of the TSpagettiThread as
four monks and a global array of
0..3 of chopstick to indicate

whether a chopstick is free (-1) or
in use (a value between 0 and 3).

We use a set of four TGauge con-
trols to show the percentage of
food reserve the monks still have
(inside themselves, not in their
bowls). After eating, this reserve
has a value of 100 and it slowly
degrades to zero (meditation takes
a lot of energy!). If a monk’s reserve
reaches zero before he is able to
eat again, the monk dies...

The constructor gives each
monk his own unique ID and sets
up the FoodValue TGauge control
(note that each monk only uses a

pointer to a Gauge that has been
placed on a form somewhere else).
The ShowFood method is the one
called by Synchronize that updates
the Progress properties of the
gauges so we can see how much
food reserve the monks still have.

There are two very important
methods when sharing resources:
the Wait and Signal routines. Wait
is used by a monk to wait for a
chopstick to become available,
while Signal is used to signal that a
given chopstick is available again,
after which the other monk can
pick it up. Note that each chopstick
can only be used by two monks, so
if one monk signals the availability
of a chopstick, there can be only
one other monk ready to pick it up;
the first monk should go back and
meditate for a while again before
needing to eat anyway...

Using the Wait and Signal meth-
ods, our first attempt at the Execute
routine can be implemented as fol-
lows: we grab the chopstick on our
right (or wait until it becomes avail-
able), then reach for the one on our
left (or wait), start to eat, put down
the chopsticks again (first the one
on our left, then the one on our
right), think for awhile and then try
to eat again. This carries on until
we’re terminated [Yikes, what kind
of Monasteries do you have in The
Netherlands! Editor] or die from
lack of food (ie when our FoodValue
reaches zero before we can replen-
ish it with rice again). See Listing 6.

When creating four monks this
way and running the example pro-
gram (which is on this month’s disk
of course), it sure looks like noth-
ing is wrong with this algorithm:
the monks are eating a lot and their
food reserve seldom gets below
70%. Since these guys eat fairly
quickly they have lots of time to
meditate and wait for a chopstick
to become available so they can eat
again. See Figure 4.

Note that a colour of gray (in the
gauge) means that no chopstick is
in use by the monk, blue means
that the monk is currently holding
one chopstick and is waiting for
another, while yellow means that
this monk is now holding two chop-
sticks and is happily eating rice be-
fore putting the sticks down again.

unit spagetti;
interface
uses Classes, Gauges;
const
 MaxPlate = 3; { four monks: 0, 1, 2 and 3 }
type
 TSpagettiThread = class(TThread)
 private
 Plate: Integer;
 FoodValue,Sticks: Integer; { 0..100 }
 Food: TGauge;
 public
 constructor Create(ID: Integer; Gauge: TGauge);
 protected
 procedure Execute; override;
 private
 procedure ShowFood;
 procedure Wait(Chop: Integer);
 procedure Signal(Chop: Integer);
 end;
implementation
uses Graphics;
var
 Chopstick: Array[0..MaxPlate] of Integer; { -1 = FREE }
{ TSpagettiThread }
constructor TSpagettiThread.Create(ID: Integer; Gauge: TGauge);
begin
 inherited Create(False);
 Plate := ID;
 Food := Gauge;
 FoodValue := 100;
end {Create};
procedure TSpagettiThread.ShowFood;
begin
 Food.Progress := FoodValue;
 case Sticks of
 1: Food.ForeColor := clNavy;
 2: Food.ForeColor := clYellow;
 else Food.ForeColor := clGray;
 end;
 if FoodValue <= 0 then Food.Visible := False
end {ShowFood};
procedure TSpagettiThread.Wait(Chop: Integer);
var i: Integer;
begin
 if Chopstick[Chop] >= 0 then begin
 repeat
 for i:=1 to 10000 do if (i div 10000) = 1 then Dec(FoodValue);
 Synchronize(ShowFood) { wait }
 until (Chopstick[Chop] < 0) or (FoodValue <= 0)
 end;
 if FoodValue > 0 then begin
 Chopstick[Chop] := Plate { taken by me };
 Inc(Sticks)
 end
end {Wait};
procedure TSpagettiThread.Signal(Chop: Integer);
begin
 if Chopstick[Chop] = Plate then begin
 { did I take it? }
 Chopstick[Chop] := -1 { release chopstick again };
 Dec(Sticks)
 end
end {Signal};
var i: Integer;
begin
 for i:=0 to MaxPlate do Chopstick[i] := -1;
end.

➤ Listing 5

April 1997 The Delphi Magazine 35

However, after a certain amount
of time (this can take up to a min-
ute, depending on random factors
and the speed of your machine),
suddenly it seems there’s some-
thing wrong: the monks have each
gotten hold of one chopstick and
each is waiting for another one to
become available. While waiting,
no-one is willing to give up his own
chopstick (this was not foreseen:
we should only need to wait for a
chopstick if another monk is eat-
ing, which shouldn’t take long
anyway). See Figure 5.

The food reserve of each monk
drops fast and it doesn’t take long
before one or more just die from
lack of food. Of course, the other(s)
just pick up the available chop-
stick(s) and start eating again. This
may, however, result in a situation
where only one monk is left, who
should not be afraid of running out
of chopsticks ever again, of
course... See Figure 6.

Surely, four wise men eating rice
with chopsticks should be able to
co-operate a little bit more and see
to it that they all survive! This is
one of the classic examples of con-
current programming, by the way,
and if you’re interested, I challenge
you to try to solve this little puzzle
before reading on to the solution.

Sharing The Table
The solution for the dining philoso-
phers is to realise that they not
only need to share the chopsticks,
but also the room.

If they want to ensure that at
least one monk is always able to eat
(in other words, no deadlock can
occur), then at most three monks
can be allowed to sit at the table at
the same time. That way, we can
ensure that at least one monk is
allowed to eat, after which he
needs to put down his chopsticks
and get off the table. The moment
this monk leaves the table, the
fourth one can join the table and
pick up a chopstick. At that time,
another of the two monks will be
eating, so the monk only has to wait
for the second chopstick to be-
come available, which can be
proven to become available as the
other monks eat and leave the table
as well.

Running the simulation with this
additional constraint (the {$IFDEF
ROOM} compiler directive) results in
a setting in which the monks never
run out of food reserves. To test it,
you can run the program for a few
days and see that the monks are all
still alive. Of course, this is but one
solution and you’re welcome to try
your own solution instead. For a
more theoretical background on
the principles of concurrent pro-
gramming, I can recommend the
book with the same title by M
Ben-Ari (Prentice Hall, ISBN 0-13-
701078-8). A bit old (1982: we used
it at University) but with Pascal
syntax and still very good on the
theoretical stuff.

Efficiency
Are threads efficient? Yes and no.
Of course, it may seem at first that
a program is now faster since a
background thread is executing a
lot of the workload from the pro-
gram itself. However, if the main
GUI thread still has to wait for the
answer to provide to the end-user,
the program hasn’t gotten any
faster than before. And no matter
how many threads we start, we still
need to perform the same amount
of work; using threads mean
we’re going to use more CPU cycles
than without threads (there’s no
denying that).

Concurrent programming tech-
niques offer us a whole new world
of experimenting with background
processing that can also help to

take the workload off the main
thread and into the background.

Conclusions
Multi-threading is a powerful fea-
ture of Win32. I hope to have shown
that the implementation of threads
in Delphi 2 is very elegant and easy
to use. We can implement our own
derived classes from TThread and
work with them in a thread-safe
way, when we play by the rules of

➤ Figure 6

➤ Figure 5

➤ Figure 4

procedure TSpagettiThread.Execute;
var i: Integer;
begin
 repeat
 for i:=1 to 50000 do
 if (i mod 10000) = 0 then
 Dec(FoodValue);
 Synchronize(ShowFood);
 Wait(Plate);
 Synchronize(ShowFood);
 if FoodValue > 0 then begin
 Wait((Plate+1) mod MaxPlate);
 if FoodValue > 0 then
 for i:=1 to 10000 do
 if (i div 10000) = 1 then
 FoodValue := 100; {eat}
 Synchronize(ShowFood);
 Signal(
 (Plate+1) mod MaxPlate);
 Synchronize(ShowFood)
 end;
 Signal(Plate);
 Synchronize(ShowFood);
 until Terminated or
 (FoodValue <= 0);
 Food.Visible := False
end {Execute};

➤ Listing 6

36 The Delphi Magazine Issue 20

using Synchronize. We’ve also explored some basic
issues of concurrent programming, which will become
more and more important as multi-threading and
resource sharing becomes more common.

Next time, we’ll go back to components and experts,
as we’ll be building a Wizard Component.

Bob Swart (Dr.Bob, home.pi.net/ ~drbob/) is a profes-
sional knowledge engineer and technical consultant
using Delphi and C++ for Bolesian (www.bole-
sian.com) and co-author of The Revolutionary Guide
to Delphi 2. He is now co-working on Delphi Internet
Solutions, a new book about Delphi and the internet.

April 1997 The Delphi Magazine 37

	Threads
	TFirstThread
	Synchronicity
	Thread Priority
	Thread Expert
	Multiple Threads
	Brute Force Attempt
	Sharing The Table
	Efficiency
	Conclusions

